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Measurement of light scattering of mixtures of aromatic hydrocarbons (benzene, toluene,
ethylbenzene) and alkanols (methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol) hav-
ing sufficiently different refractive indices, produced rather reliable thermodynamic data.
From these data it was possible to deduce the composition dependence of the change in
Gibbs energy of mixing ∆Gmix. These dependences were measured for eleven binary mix-
tures. A model of alcohol molecules forming linear aggregates which are in equilibrium was
developed and used for interpretation of the data. All ∆Gmix data for the eleven mixtures as
well as the ∆Hmix data obtained for these mixtures from literature could be interpreted using
just two values that characterized the Gibbs energy and enthalpy of the formation of hydro-
gen bonds. The analysis also yielded plausible results concerning the contact interactions.
Keywords: Alcohols; Aromatic hydrocarbons; Benzenes; Arenes; Light scattering; Gibbs en-
ergy of mixing; Association equilibrium; Thermodynamics; Binary mixtures.

In our previous papers1–5 we have shown that light scattering can provide
valuable thermodynamic data on mixtures of two low-molecular-weight
compounds. The data are especially accurate when the refractive indices of
the two components differ by about 0.15 or more. Mixtures of aromatic hy-
drocarbons and alkanols exhibit differences of this magnitude. Alkanols are
known to form clusters that are held together by hydrogen bonds. When
mixed with other compounds (not capable of hydrogen bonding), the clus-
ters gradually disintegrate. This phenomenon makes the thermodynamics
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of mixtures containing alkanols rather complex. In particular, accurate data
for Gibbs energy of mixing are generally not available. This study is de-
voted to collection of such data for the aromatic hydrocarbon/alkanol sys-
tems and to their analysis.

Light scattering of a liquid is usually expressed in terms of the Rayleigh
ratio. The total scattering Rayleigh ratio, Rt, consists of two parts, isotropic
scattering Ris, and anisotropic scattering Ran. Rt and the intensities of hori-
zontally and vertically polarized scattered light ih and iv can be measured
experimentally. Ris can be evaluated from the relation derived by
Cabannes6.

Ris = RtCf = Rt(6 – 7∆)/(6 + 6∆) (1)

∆ = ih/iv , (2)

where Cf is the Cabannes factor, and ∆ is the depolarization of the scattered
light.

Ris can be further divided into the density scattering Rd and the
compositional scattering Rc. Hence

Rt = Ris + Ran = Rc + Rd + Ran . (3)

Rd can be calculated as

Rd = β(0.5π2kT/λ 0
4 )[ρ(∂ε/∂ρ)T]2 , (4)

where λ0 is the wavelength of the incident light in vacuum, β is the isother-
mal compressibility of the liquid, ρ is its density, and ε is its permittivity. ε
is equal to n2 for transparent liquids. The dependence of refractive index n
on the liquid density is best represented by the Eykman relation7,8. The ex-
pression for ρ(∂ε/∂ρ)T then can be derived as

ρ(∂ε/∂ρ)T = 2n(n + 0.4)(n2 – 1)/(n2 + 0.8n + 1) . (5)
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According to Einstein’s theory9, Rc in a binary mixture of components A
and B is related to the chemical potential of the components of the liquid,
µi as

Rc = (2π2kT/λ 0
4 )VxAn2[(dn/dxA)2/(∂µB/∂xB)P,T] , (6)

where xi is the mole fraction of the i-th component (i = A or B), and V is the
molar volume of the mixture. In this paper we are going to use the light
scattering data for the evaluation of the derivative of the chemical potential
(∂µB/∂xB)P,T, from which we will obtain ∆Gmix, the change of the Gibbs func-
tion in the process of mixing. The functional form of ∆Gmix for mixtures in-
volving alcohols is quite different from relations typical of mixtures of
components that do not exhibit strong specific interactions. We will de-
velop a thermodynamic model of alcohol-containing mixtures that inter-
prets the data quite closely and simultaneously provides new data
concerning the thermodynamics of hydrogen bonds.

EXPERIMENTAL

We have analyzed the dependence of light scattering on concentration for eleven binary
mixtures of aromatic hydrocarbons and aliphatic linear alcohols. As components of the mix-
tures we used methanol (ML), ethanol (EL), propan-1-ol (PL), butan-1-ol (BL), pentan-1-ol
(AL), benzene (BE), toluene (TO), ethylbenzene (EB), and p-xylene (PX).

The techniques and equipment used for measuring light scattering, density, and refractive
index data are the same as those given in our previous paper1. All aromatic hydrocarbons
and alkanols were obtained from Aldrich Chemical Co. with purity better than 99% and
used as supplied. The refractive index of the pure liquids and mixtures were measured with
a Bausch–Lomb precision refractometer. The light scattering measurements were performed
on a modified Fica 50 photometer equipped with a mercury lamp, and a filter providing in-
cident light at λ0 = 546 nm. The scattered light was registered with a laboratory photometer
(Pacific Instruments Model 110) and its output was measured with a Hewlett–Packard
Multimeter (Model 3438A) which was interfaced to a computer. Density was measured with
an Anton Paar digital precision density meter (Model DMA 02C). All experiments were per-
formed at 20 °C.

RESULTS AND DISCUSSION

We have evaluated the measured intensities of the scattered light in terms
of the total Rayleigh ratio Rt, its anisotropic component Ran, the density
component Rd, and the compositional Rayleigh ratio Rc. The excess com-
pressibility of the mixtures, which is needed for accurate evaluation of the
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density scattering, was not available for our mixtures. However, because the
refractive indices for all our solvent pairs were sufficiently different, it was
possible3 to neglect the excess compressibility without unduly compromis-
ing the values of Rd. In Table I we are presenting the experimental values of
xB, φB (volume fraction), Rt, Ran, Rc, and (∂µB/∂xB)P,T for our solvent mixtures.
We are using subscript A for alcohols and subscript B for aromatic com-
pounds.

As expected, at one end of the composition range, (∂µB/∂xB)P,T increased
beyond limits. For easier calculations, we replaced it by a function F(x) de-
fined as

(∂µB/∂xB)P,T = RT [1/xB – 2F(x)xA] . (7)

It should be noted that the function F(x) is constant and equal to the
well-known interaction parameter χ of the van Laar and Flory theories if
the mixture could be characterized by χ that is independent of the compo-
sition of the mixture. In our present case, F(x) was steeply increasing for
low concentrations of the alcohol.

We found it convenient to fit our experimental data to a
phenomenological function

F(x) = a + bxB + cxB
2 + e/xB . (8)

The fit was excellent. While the lowest value of F(x) was about 1.1 and
the highest values went up to 10, the standard deviation of individual
points for all eleven systems was less than 0.15; for seven systems, it was
less than 0.07 and for three systems (BE–ML, BE–EL, TO–EL) was less than
0.03.

Using straightforward thermodynamic calculations, we derived from Eqs
(7) and (8) first the expressions for the chemical potentials and then the
phenomenological relation for ∆Gmix which read

∆Gmix = RT [xB ln xB + xA(1 – 2e) ln xA + xAxB{a + (b/3)(1+ xA) +

(c/6)(1 + xA + xA
2 )}] . (9)
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TABLE I
Light scattering data for different mixtures

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

Benzene (B)–methanol (A)

1.000 1.000 16.694 11.355 0.000

0.936 0.970 17.315 10.876 1.209 702.3

0.876 0.940 19.624 10.573 3.931 459.2

0.804 0.900 23.848 10.238 8.630 372.1

0.797 0.896 24.735 10.383 9.387 361.0

0.720 0.849 29.605 9.767 15.037 353.0

0.649 0.802 33.918 9.283 19.997 375.6

0.646 0.800 33.661 9.217 19.815 385.1

0.578 0.750 35.573 9.013 22.102 465.9

0.514 0.699 34.103 8.112 21.707 616.1

0.508 0.694 34.460 8.238 21.954 622.4

0.409 0.603 29.715 6.792 18.957 1 057.3

0.407 0.601 29.422 6.856 18.605 1 083.6

0.314 0.501 23.285 5.689 13.956 2 038.6

0.313 0.500 23.912 5.696 14.579 1 958.6

0.231 0.397 17.773 4.717 9.733 3 944.8

0.164 0.302 13.209 3.603 6.564 7 436.9

0.098 0.192 8.869 2.431 3.702 16 776.7

0.000 0.000 2.703 0.462 0.000

Benzene (B)–ethanol (A)

1.000 1.000 17.139 11.643 0.000

0.951 0.967 17.186 11.040 1.178 883.5

0.912 0.941 18.127 10.708 2.523 757.1

0.856 0.901 20.228 10.405 5.034 645.3

0.790 0.851 22.961 9.730 8.570 571.1

0.731 0.805 25.382 9.810 11.029 585.8

0.610 0.704 26.545 8.610 13.643 725.7
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TABLE I
(Continued)

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

0.502 0.605 24.002 7.258 12.686 1 048.8

0.403 0.507 20.022 6.375 9.815 1 703.0

0.308 0.404 15.861 5.128 7.122 2 853.4

0.227 0.308 12.069 3.938 4.720 4 986.8

0.149 0.210 8.848 2.999 2.634 10 242.9

0.066 0.097 5.625 1.573 1.052 29 543.4

0.000 0.000 3.336 0.515 0.000

Benzene (B)–propan-1-ol (A)

1.000 1.000 16.700 11.348 0.000

0.960 0.996 16.771 11.032 0.494 1 695.9

0.885 0.901 18.474 10.440 2.986 793.2

0.802 0.828 19.888 9.437 5.618 717.8

0.728 0.761 21.217 9.016 7.557 733.0

0.640 0.679 21.503 8.428 8.651 851.8

0.549 0.592 19.177 7.147 7.830 1 193.5

0.443 0.486 16.103 5.454 6.710 1 762.7

0.348 0.388 13.118 4.238 5.175 2 751.4

0.258 0.292 10.203 3.357 3.359 4 952.1

0.089 0.104 5.798 1.703 1.015 20 996.4

0.000 0.000 3.353 0.483 0.000

Benzene (B)–butan-1-ol (A)

1.000 1.000 16.700 11.463 0.000

0.969 0.969 16.998 11.120 0.731 1 045.2

0.938 0.936 17.419 10.644 1.715 882.0

0.907 0.904 18.040 10.492 2.572 854.7

0.845 0.841 18.964 9.810 4.341 798.5

0.766 0.761 19.571 9.015 5.939 827.6

0.683 0.676 19.224 8.271 6.533 963.3
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TABLE I
(Continued)

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

0.593 0.586 17.534 7.260 6.056 1 263.8

0.495 0.488 15.067 5.586 5.473 1 648.5

0.394 0.387 12.285 4.584 3.899 2 654.6

0.300 0.293 9.792 3.723 2.452 4 701.4

0.201 0.196 7.600 2.549 1.619 7 842.8

0.107 0.104 5.617 1.572 0.783 17 580.6

0.000 0.000 3.634 0.556 0.000

Benzene (B)–pentan-1-ol (A)

1.000 1.000 16.700 11.253 0.000

0.959 0.951 16.974 10.820 0.878 1 296.8

0.919 0.903 17.713 10.432 2.167 984.3

0.865 0.840 18.427 9.873 3.640 896.3

0.794 0.759 18.889 9.506 4.715 957.3

0.714 0.672 18.116 8.308 5.391 1 044.3

0.628 0.580 16.324 7.478 4.676 1 410.5

0.532 0.483 14.126 6.072 4.133 1 799.0

0.434 0.386 11.842 4.867 3.285 2 468.5

0.329 0.287 9.239 3.439 2.333 3 717.8

0.226 0.193 7.393 2.618 1.507 6 044.3

0.098 0.082 5.459 1.818 0.595 15 988.0

0.000 0.000 3.567 0.679 0.000

Toluene (B)–ethanol (A)

1.000 1.000 19.411 14.682 0.000

0.939 0.966 19.788 13.884 1.226 705.9

0.885 0.933 20.908 13.413 2.864 603.1

0.820 0.892 23.359 13.220 5.570 520.8

0.736 0.835 25.629 11.876 9.271 502.9

0.663 0.782 27.437 11.044 11.995 542.9
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TABLE I
(Continued)

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

0.578 0.714 28.152 10.284 13.578 672.8

0.484 0.631 26.849 9.095 13.604 945.4

0.382 0.530 22.524 7.497 11.053 1 648.8

0.296 0.434 18.396 5.678 8.919 2 719.3

0.219 0.339 14.104 4.333 6.151 5 050.3

0.148 0.241 10.619 3.042 4.146 9 357.0

0.000 0.000 3.493 0.529 0.000

Toluene (B)–propan-1-ol (A)

1.000 1.000 19.457 14.752 0.000

0.954 0.967 20.162 14.577 0.938 767.3

0.912 0.937 20.161 13.649 1.919 730.6

0.868 0.903 20.386 12.966 2.884 744.5

0.789 0.841 21.915 12.197 5.287 671.5

0.696 0.765 23.204 11.440 7.461 721.3

0.608 0.688 23.190 10.310 8.706 845.0

0.500 0.587 21.201 8.959 8.235 1 243.5

0.403 0.490 18.210 7.255 7.109 1 880.0

0.307 0.387 13.646 4.270 5.704 2 997.5

0.227 0.294 11.110 3.943 3.652 5 685.2

0.151 0.202 8.776 2.840 2.577 9 546.1

0.000 0.000 3.585 0.565 0.000

Toluene (B)–butan-1-ol (A)

1.000 1.000 19.565 14.589 0.000

0.945 0.952 19.712 13.968 0.895 1 106.7

0.890 0.904 20.203 13.232 2.247 871.7

0.820 0.841 20.607 12.211 3.826 828.4

0.730 0.759 20.852 10.903 5.576 850.6

0.643 0.676 20.303 9.929 6.190 1 019.8
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TABLE I
(Continued)

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

0.547 0.584 18.504 8.534 5.986 1 353.8

0.447 0.484 15.909 6.964 5.173 1 958.4

0.349 0.384 13.929 5.864 4.497 2 725.9

0.258 0.287 11.058 4.055 3.624 3 972.8

0.083 0.095 6.042 1.986 1.035 8 185.1

0.000 0.000 3.477 0.623 0.000

Toluene (B)–pentan-1-ol (A)

1.000 1.000 19.436 14.521 0.000

0.953 0.952 19.564 13.944 0.817 1 144.7

0.904 0.903 20.016 13.437 1.889 974.2

0.844 0.842 20.137 12.321 3.260 882.1

0.760 0.756 19.818 11.156 4.287 985.1

0.680 0.676 19.278 10.339 4.729 1 143.8

0.591 0.587 17.343 8.728 4.578 1 452.3

0.490 0.485 15.176 7.372 3.958 2 026.4

0.393 0.388 12.651 5.842 3.140 2 963.6

0.289 0.286 10.030 3.925 2.617 4 067.0

0.204 0.201 7.965 3.104 1.517 7 739.0

0.095 0.094 5.669 1.840 0.661 19 809.3

0.000 0.000 3.668 0.652 0.000

Ethylbenzene (B)–ethanol (A)

1.000 1.000 17.226 12.657 0.000

0.932 0.966 17.731 12.227 0.992 841.8

0.870 0.933 19.201 11.796 2.949 587.9

0.811 0.900 21.078 11.235 5.444 500.9

0.704 0.833 25.578 10.411 10.883 463.3

0.630 0.781 28.831 10.283 14.356 497.8

0.529 0.702 30.153 9.203 16.899 643.4



The values of a, b, c, and e are collected in Table II.
A full thermodynamic analysis of the process of mixing requires experi-

mental data for ∆Gmix as well as for the change of the enthalpy of mixing
∆Hmix, and of the volume of mixing ∆Vmix. Fortunately, the enthalpies of
mixing ∆Hmix of ten of our eleven systems were measured by Mrazek and
Van Ness10 at 25, 35, and 45 °C. We have extrapolated their smoothed val-
ues to our experimental temperature of 20 °C. The result can be described
by Eq. (10); the applicable values of the parameters are collected in Table III.
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TABLE I
(Continued)

Rayleigh ratio · 104 (∂µB/∂xB)P,T

xB φB Rt Ran Rc J/mol

0.424 0.607 27.975 7.953 16.143 1 006.8

0.354 0.535 24.640 6.993 13.900 1 518.9

0.219 0.370 16.975 3.698 9.841 3 548.4

0.134 0.246 11.071 2.742 5.131 9 325.5

0.085 0.163 8.445 1.794 3.610 15 952.8

0.000 0.000 3.137 0.406 0.000

p-Xylene (B)–ethanol (A)

1.000 1.000 25.275 20.666 0.000

0.870 0.934 26.543 19.319 2.730 617.4

0.815 0.903 28.336 18.651 5.246 497.2

0.700 0.831 31.605 16.776 10.519 482.7

0.583 0.747 34.787 14.873 15.756 547.8

0.485 0.666 33.127 12.682 16.437 777.7

0.397 0.582 29.427 10.605 14.971 1 198.7

0.307 0.483 24.244 8.799 11.782 2 141.2

0.228 0.384 18.874 6.856 8.546 3 981.7

0.160 0.288 14.284 3.555 7.445 5 928.0

0.101 0.191 10.218 3.064 4.059 13 773.1

0.049 0.098 6.412 1.647 1.854 37 190.8

0.000 0.000 3.207 0.489 0.000
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TABLE II
Coefficients for the fitting of the dependence of the function F(x) on composition (Eq. (8))
and for calculating the dependence of ∆Gmix on composition (Eq. (9))

Mixture a b c e

BE–ML 1.5162 –1.7821 2.0376 .3017

BE–EL 1.3522 –1.4592 1.5089 .2821

BE–PL 3.6002 –7.4420 5.6233 .0425

BE–BL 1.5163 –2.6841 2.2305 .2587

BE–AL 2.6054 –7.0615 6.7746 .1618

TO–EL 1.1375 –1.0230 1.4362 .3219

TO–PL 0.7818 –0.3061 0.8167 .3310

TO–BL 2.4156 –6.3636 6.7046 .1865

TO–AL 1.5926 –3.0286 2.7003 .2221

EB–EL 2.3395 –5.0760 5.5525 .2250

PX–EL 1.7052 –3.4316 4.2717 .2875

TABLE III
Coefficients for dependence of ∆Hmix on xB at 20 °C (Eq. (10))

Mixture 104 A 104 B 104 C 104 D 104 E 104 F

BE–ML 4.3572 2.6747 –0.4607 0.4182 –0.0186 0.1271

BE–EL 3.5786 2.3892 0.3217 0.8408 –0.0533 –0.0312

BE–PL 2.8469 1.6514 0.2873 0.6070 –0.2561 0.0349

BE–BL 2.5556 1.4767 0.3682 0.4800 –0.2975 0.1127

BE–AL 2.4753 1.3659 0.2961 0.3122 –0.2913 0.2473

TO–EL 3.8624 2.4995 0.2422 0.9490 0.0539 0.1004

TO–PL 3.0959 1.9947 0.3157 0.4567 –0.2174 0.1481

TO–BL 2.8903 1.7764 0.3548 0.5076 –0.1688 0.2625

TO–AL 3.2104 1.7361 0.3179 0.5392 –0.1628 0.2658

EB–EL 3.5176 2.1063 –0.0658 0.5216 –0.2145 0.0224



∆Hmix = xAxB/[A + B(1 – 2xB) + C(1 – 2xB)2 + D(1 – 2xB)3 + E(1 – 2xB)4 +
F(1 – 2xB)5]

(10)

In our previous paper11 we have reported measurement of ∆Vmix for a ma-
jority of our systems. The results are represented by Eq. (11) and the param-
eters are presented in Table IV.

∆Vmix = xAxB[a0 + a1(xB – xA)] / [1 + c(xB – xA)] (11)

Neither the van Laar theory, which is applicable to mixtures of small
molecules, nor the Flory–Huggins theory developed for mixtures of mole-
cules differing appreciably in size were capable of interpreting the experi-
mental data. Especially vexing was the role of the parameter e in Eq. (9).
We have therefore developed a model of the thermodynamic behavior of
liquid alcohols and their mixtures with hydrocarbons and similar mole-
cules.
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TABLE IV
Coefficients for dependence of ∆Vmix on xB at 20 °C (Eq. (11))

Mixture a0 a1 c

BE–ML –0.030 0.217 –0.086

BE–EL 0.026 0.646 –0.210

BE–PL 0.285 0.521 –0.346

BE–BL 0.660 0.360 –0.280

BE–AL 0.984 0.187 –0.383

TO–EL –0.323 0.731 0.045

TO–PL –0.151 0.758 –0.040

TO–BL 0.090 0.600 –0.169

TO–AL 0.189 0.442 –0.359

EB–EL –0.046 0.640 –0.143

PX–EL –0.185 0.649 0.196



Model of Liquid Alcohols and Their Mixtures with Hydrocarbons

It is well known that water molecules are bound by hydrogen bonds into an
ever-changing three-dimensional network. In liquid alcohols, hydrogen
bonds act in a similar way. However, each alcohol molecule has only one
hydroxy group capable of hydrogen bonding. Thus, the resulting aggregates
are linear. In the liquid exist chains having various numbers of monomeric
units. These chains are in a fast equilibrium. When a compound incapable
of participating in hydrogen bonds dilutes the alcohol, the equilibrium dis-
tribution of the chain length has to shift. In the literature, there are numer-
ous studies of these issues, some of them quite similar to our model12–16.
Nevertheless, we deem it important to present our analysis in detail because
of some finer points that are crucial for interpreting our experimental data.

In our model we will assume that standard relations in the thermody-
namics of chemical reactions can describe the equilibrium. We will also
consider the role played by the configuration statistics of liquid solutions.
Following the Flory–Huggins theory, we will use the quasi-crystalline lattice
model of liquids and employ the Boltzmann relation for calculating the
configuration entropy of the mixtures. In a snapshot view, the alcohol
chains resemble a polydisperse polymer and we will treat them as such. In
the following, we will consider all chains as molecules of separate chemical
species. We will often call them i-mers.

Our goal is to evaluate ∆Hmix, ∆Smix, and ∆Gmix for mixtures of alcohols
and diluents starting from the properties of molecules and from their be-
havior in the hydrogen bonding and in the contact interactions. The
conformational behavior of the molecules plays a major role in our model.
We will divide the conformational changes into two groups. In one group,
the change of conformation does not affect the shape of the molecules
enough to influence the placement of the molecule on the lattice (e.g., rota-
tions of the methyl groups). We will call these conformations internal con-
formations. In the other group, the change of conformation changes the
shape of the molecule and therefore its placement on the lattice. It is cus-
tomary in the pseudocrystalline lattice theories of solutions to model the
multiple conformations by dividing the molecules into segments that can
be placed on the lattice as a continuous chain. The resulting conformations
are external conformations.

In the first step of our analysis we need to accommodate our molecules A
and B which have generally a different size to a common lattice. In stan-
dard studies it is usual to divide each molecule into segments of the same
size. There are rA and rB of them. These quantities usually do not figure in-
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dividually in the final expressions. Thus they may be selected arbitrarily,
only their ratio must be equal to the ratio of molar volumes. However, we
will eventually see that in the present case the individual values do matter.

We found it convenient to define rigid molecules as molecules having
only internal degrees of freedom characterized by internal conformational
partition function Y. We will consider several liquids. Hypothetical rigid pure
monomeric alcohol (as well as diluent) is a collection of rigid alcohol
unimers placed on the lattice in a unique way. Pure rigid aggregated alco-
hol is a collection of chains of alcohol entities still in the rigid form and
still uniquely placed on the lattice. Collections having two distributions of
chain lengths are considered: one corresponding to the alcohol in its pure
form, the other to its mixture with the diluent. The following subscripts are
used: A for quantities related to all alcohol entities, B for diluent molecules,
and i for individual i-mers.

In the next step we ascribe to our rigid molecules basic values of enthalpy
HA and HB, of entropy SA and SB, and internal conformational partition
function YA and YB. The H and S values reflect mainly the chemical struc-
ture of the molecules. (i – 1) hydrogen bonds arise when rigid i-mers are
formed from i rigid molecules of the alcohol. We assume that each hydro-
gen bond contributes HH, SH, and YH to the enthalpy Hi, entropy Si, and
partition function Yi of the rigid i-mers, respectively. Thus

Hi = iHA + (i – 1)HH (12)

Si = iSA + (i – 1)SH (13)

Yi = Y Yi i
A H

( – )1 (14)

The basic values of HA, HB, SA, SB, YA, and YB do not depend on the state
of the system, i.e., whether it is a pure component or a mixture, whether
rigid or accommodated on the lattice. They will not enter the final expres-
sions, only HH, SH, and YH will.

We consider a system composed of NA alcoholic entities and NB mole-
cules of the diluent that are randomly placed on a lattice with N = rANA +
rBNB lattice points. The alcoholic entities are distributed among i-mers.The
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number of individual i-mers is Ni; each molecule of an i-mer occupies irA
lattice points. Obviously, Σi iNi = NA. We also define volume fractions as φA =
rANA/N, φB = rBNB/N, and φi = irANi/N.

We need to evaluate enthalpy and entropy values for pure diluent (sub-
script d), pure alcohol (subscript alc), and the mixture (subscript m). Evalu-
ation of the enthalpy values is straightforward:

Hd = NBHB (15)

Halc = Σi Ni
0 Hi = NA(HA + HH ) – Σi Ni

0 HH (16)

Hm = NBHB + Σi NiHi + Hcont = NBHB + NA(HA + HH ) – Σi NiHH + Hcont . (17)

Here, Hcont is the enthalpy part of the contact interaction term. We will
return to it later.

Evaluation of the entropy values is more complicated. Entropy consists of
three terms:

1. Chemical structure related entropy (subscript st) that is quite analo-
gous to enthalpy

Sd,st = NBSB (18)

Salc,st = NA(SA + SH ) – Σi Ni
0 SH (19)

Sm,st = NB SB + NA(SA + SH ) – Σi NiSH . (20)

2. Internal conformation related term (subscript int). For this term we
will use the Boltzmann relation that in the present case yields

Sd,int = k ln Y N
B

B = kNB ln YB (21)
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Salc,int = k Σi Ni
0 ln Yi = k(NA ln YA + NA ln YH – Σi Ni

0 ln YH) (22)

Sm,int = k(NB ln YB + Σi Ni ln Yi) = k(NB ln YB + NA ln YA + NA ln YH –
Σi Ni ln YH)

(23)

3. External conformation term. This is the term usually employed in
pseudolattice theories. In our model it is related to W, the number of differ-
ent microscopic on-lattice arrangements compatible with the same macro-
scopic state of the system by the Boltzmann relation S = k ln W. We will
first evaluate W for the mixture, then calculate the expressions for the dilu-
ent and the alcohol as limits for vanishing values of NA and NB, respec-
tively.

The expression for W for our system reads

W
N

N N N
W

r N ir N
i i

i A i
=

− + −

!

! !
,

( ) ( )
B

ext
B B1 1Σ Π

(24)

where N = (NArA + NBrB) is the number of lattice points and the term Wext is
due to multiplicity of external chain conformations. For Wext, Eq. (24a)
holds.

Wext = exp (Sm,ext/k) (24a)

Here Sm,ext is defined by modified Eq. (23), where we have replaced the sub-
script “int” by “ext” and the indexed symbols Y by identically indexed
symbols X. For example, the symbol Xi denotes the number of possible
i-mer external conformations, i.e. the number of ways of placing an i-mer
on an empty lattice if the position of one of its end segments is fixed.
Stirling approximation of factorials and routine algebra transform Eq. (24)
into

Sm,conf/k = NB – NBrB + Σi Ni – NArA – NB ln (φB/rB) – Σi Ni ln (φi/irA) +
Sm,ext/k .

(25)
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Conformational entropies for pure diluent and pure alcohol are then
found as

Sd,conf/k = NB – NBrB + NB ln rB + Sd,ext/k (26)

Salc,conf/k = Σi Ni
0 – NArA – Σi Ni

0 ln (φi
0 /irA) + Salc,ext/k . (27)

The superscript zero in Ni
0 and φi

0 refers to the distribution of chain length
in pure alcohol that is different from the distribution of alcohol chains in
their mixtures with the diluent.

The change of entropy in mixing ∆Smix is then calculated by subtracting
the values for pure diluent and pure alcohol from the values of the mixture.
For the three entropy terms, we then obtain after some manipulation

∆Smix,st = (Σi Ni
0 – Σi Ni )SH (28)

∆Smix,int = k(Σi Ni
0 – Σi Ni) ln YH (29)

∆Smix,conf = k[–NB ln φB + Σi Ni
0 ln (φi

0 /i) – Σi Ni ln (φi/i) –
(Σi Ni

0 – Σi Ni)(1 + ln rA) + (Σi Ni
0 – Σi Ni) ln XH] .

(30)

Combining the applicable terms, we obtain

∆Smix = (Σi Ni
0 – Σi Ni)[SH + k(ln ZH – 1 – ln rA)] +

k[–NB ln φB + Σi Ni
0 ln (φi

0 /i) – Σi Ni ln (φi/i)] + Scont ,
(31)

where

ZH = YHXH (31a)
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is the contribution of one hydrogen bond to the total (i.e. both internal
and external) conformational partition function Zi. The last term Scont in
Eq. (31) is the entropy part of the contact interaction term. Similar combi-
nation of enthalpy terms leads to ∆Hmix.

∆Hmix = (Σi Ni
0 – Σi Ni)HH + Hcont (32)

Finally, for ∆Gmix = ∆Hmix – T ∆Smix we get

∆Gmix = (Σi Ni
0 – Σi Ni)[HH – TSH – kT (ln ZH – 1 – ln rA)] +

kT [NB ln φB – Σi Ni
0 ln (φi

0 /i) + Σi Ni ln (φi/i)] + Gcont

(33)

In the last term, we combined the contact terms as Gcont = Hcont – TScont.
The expressions (31)–(33) are general in the sense that they apply what-

ever are the distributions of Ni
0 and Ni. However, we are looking for more

practical relations that are based on the equilibria governing the cre-
ation/destruction of hydrogen bonds and are hopefully more simple. For
this purpose, we need to know the chemical potentials of the i-mers µi. We
will evaluate them from their definition

µi = [∂Gm/∂ni]P,T,nj≠i = NAv[∂Gm/∂Ni]P,T,Nj≠i . (34)

In this relation ni is the number of moles of the i-th component, NAv is the
Avogadro constant, and Gm is the Gibbs energy of the mixture, which is re-
lated to previously calculated quantities as

Gm = Hm – T(Sm,st + Sm,int + Sm,conf + Scont) =
NB[HB - T{SB + k(ln ZB – ln φB + ln rB + 1 – rB)}] +
NA[HA + HH – T{SA + SH + k(ln ZA + ln ZH – rA)}] +

Σj Nj[–HH – T{–SH + k(– ln ZH + 1 – ln φj + ln jrA )}] + Gcont .

(35)

For the purpose of taking the derivative, it was convenient to switch the
summation index from i to j. We need also to express Gcont in an analytical
form. We will follow the Flory–Huggins approach by approximating the
term by a product of estimated number of contacts between species A and
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B, NBφA, and the parameter RTg(φB) characterizing the interactions between
molecules A and B. We allow the parameter g(φB) to depend on the compo-
sition of the mixture, because such dependence has been observed in many
experimental systems.

Before taking the derivative, it is practical to recognize the following rela-
tions that are valid for our model.

∂NA/∂Ni = i (36)

∂ ln φB/∂Ni = – iφA/NA (37)

∂ Σj Nj ln φj/∂Ni = ln φi + 1 – i Σj φj/j (38)

∂Gcont/∂Ni = (ikTφB
2 rA/rB)(g – φA∂g/∂φB) (39)

We are omitting the constancy subscripts in the above and following ex-
pressions. With the help of these relations, the required relation for µi is ob-
tained as

µi/NAv = i[HA + HH – TSA – TSH –
– kT{ln ZA + ln ZH – rA + φA/NA + Σj φj/j – (φB

2 rA/rB)(g – φA(∂g/∂φB)}] –
HH + TSH + kT ln ZH + kT ln (φi/irA) .

(40)

We are now ready to study the equilibrium of reactions involving hydro-
gen bonds. Let us consider the following reaction between an i-mer Ai and
an unimer A1.

At equilibrium, the following relation must hold

µi + µ1 – µi+1 = 0 . (42)
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We will substitute into this relation sequentially the expressions for
chemical potentials from Eq. (40) adapted for unimer, i-mer, and (i + 1)-mer.
The terms that in Eq. (40) are multiplied by i will cancel out and Eq. (42) will
change to

NAv(–HH + TSH + kT ln ZH – kT ln rA) = RT ln [iφi+1/(i + 1)φiφ1] . (43)

Let us define standard Gibbs energy for formation of hydrogen bonds G0

and equilibrium constant K as

G0 ≡ NAv(HH – TSH – kT ln ZH + kT ln rA) (44)

K ≡ exp (–G0/RT) . (45)

It is noteworthy that G0 contains, besides the quantities that characterize
the hydrogen bond, also the parameter rA that describes the size of the alco-
hol molecule.

Equation (43) may be now recast as

φi+1 = [(i + 1)φ1/i]Kφi . (46)

Substituting an analogous expression for φi into Eq. (44) and repeating it
again and again, we obtain a relation that expresses the whole distribution
of i-mers in terms of φ1, namely

φi = iKi–1φ1
i . (47)

For calculating φ1, we use the mass balance equation which reads

φA = Σi φi = φ1Σi i(Kφ1)i–1 = φ1/(1 – Kφ1)2 . (48)

Solving the last equation in Eq. (48) yields
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φ1 = [2KφA + 1 – {(2KφA + 1)2 – 4K2φA
2 }1/2]/2K2φA . (49)

When considering pure alcohol in the absence of the diluent, we obtain a
similar expression

φ1
0 = [2K + 1 – {(2K + 1)2 - 4K2}1/2]/2K2 . (50)

The rest of the calculation is straightforward. We modify Eq. (33) for
∆Gmix by expressing Ni

0 and Ni first in terms of φi
0 and φi and then in terms

φ1
0 and φ1. The summations follow from known algebraic rules. Finally, we

recast the equation in terms of moles instead of molecules, introduce G0 as
in Eq. (44), and enter our model representation of Gcont. The result reads

∆Gmix = – [G0 + RT]nA[φ1/{φA(1– Kφ1)} – φ1
0 /(1 – Kφ1

0 )] +
RT[nAφ1/{φA(1 – Kφ1)}][ln (Kφ1)/(1 – Kφ1) – ln K] –

RT[nAφ1
0 /(1 – Kφ1

0 )][ln (Kφ1
0 )/(1 – Kφ1

0 ) – ln K] +
RT nB ln φB + RT nBφA g(φB) .

(51)

Further manipulation of this equation leads to a much simpler form.

∆Gmix = nA RT[ln (φ1/φ1
0 ) + K(φ1 – φ1

0 )] + RT nB ln φB + RT nBφA g(φB) (52)

Of course, the quantities φ1 and φ1
0 must be obtained from Eqs (49) and

(50).
Manipulations analogous to those that transformed Eq. (33) into Eq. (52)

when applied to Eq. (32) give for ∆Hmix

∆Hmix = nANAv K(φ1 – φ1
0 )HH + RT nBφA h(φB) , (53)

where h(φB) is the enthalpy part of the Gibbs energy function g(φB).
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Thus for our model, both ∆Gmix and ∆Hmix are expressed as functions of
two constant parameters K (or G0) and H0 = NAvHH, and two functions of
the composition of the mixture g(φB) and h(φB).

In the next section, we will try to evaluate these parameters and func-
tions from our experimental data.

Interpretation of the Experimental Data

In the first step of our analysis we will be asking whether our model of alco-
hol–diluent mixtures is capable of describing our experimental data with a
reasonable accuracy. In the next step, we will try to calculate the basic ther-
modynamic quantities governing our system.

The experimental data for the dependence of ∆Gmix on composition are
to be fitted by an adjustable parameter G0 and an adjustable function g(φB).
It is obvious that for every arbitrary value of G0 there exists a function g(φB)
that yields a good fit. Consequently, we need to develop some criterion
that restricts the range of acceptable values of our adjustable quantities. We
will require that g(φB) be a slowly varying function that does not exhibit
sharp turns on either end of the concentration scale. We have found that,
for a given binary system, this criterion is satisfied for only a narrow range
of G0 values.

We have performed the above analysis for all our experimental systems
and collected a list of the most plausible values of G0. We have found that
the G0 values were very close for mixtures containing the same alcohol and
depended on the length of the alcohol in a very regular way. Equation (44)
predicts that for different alcohols, G0 is a linear function of RT ln rA, where
rA is the number of lattice locations occupied by the alcohol molecule. A
plausible assumption would make rA equal to the number of atom groups
contributed by the alcohol to the chain, that is rA = 2 for methanol, rA = 3
for ethanol, and so on. We have therefore adjusted the G0 values to satisfy
Eq. (44). The necessary adjustments were only minor. The adjusted values
satisfied the relation

G0 = –13 380 J/mol + RT ln rA . (54)

Using the adjusted values we have recalculated the g(φB) functions. They
still behaved well. Table V collects the values of G0 and of the function g(φB)
at its midpoint, i.e., at φB = 0.5. Most functions g(φB) were very flat; the dif-
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ference between the lowest and highest value in the interval φB = 0.05 to
0.95 was less than 0.2 for seven of them; for none was it higher than 0.8.
We ascribe this slightly erratic shape of the function to the experimental
and fitting errors in our light scattering data. These errors influence the
data most seriously at the ends of the concentration scale. It was most satis-
fying that the g values behaved in a very regular way with respect to the
length of the alcohol molecule.

Once the value of G0 is fixed, ∆Hmix may be fitted by an adjustable param-
eter H0 and an adjustable function h(φB). Using again the same approach,
we have found again that only a narrow range of H0 values yields a slowly
varying function h(φB). For all our systems, the H0 values were very close to
each other. In the next step we repeated the fitting procedure, but we
adopted for all our system the same value of H0 = –27 000 J/mol. The values
of h(φB) at φB = 0.5 exhibited a dependence on the length of the alcohol
molecule that was less satisfactory but still acceptable in our eyes: with one
exception, the difference between the lowest and highest value in the inter-
val φB = 0.05–0.95 was less than 0.3. The values of h(φB) at φB = 0.5 are in-
cluded in Table V.
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TABLE V
Thermodynamic results for eleven alcohol–aromatic hydrocarbon mixtures

Mixture G0, kJ/mol g(φB = 0.5) h(φB = 0.5)

BE–ML –11.69 0.20 –0.26

BE–EL –10.70 0.27 –0.10

TO–EL –10.70 0.24 –0.26

EB–EL –10.70 0.28 –0.27

PX–EL –10.70 0.27

BE–PL –10.00 0.29 0.25

TO–PL –10.00 0.30 –0.03

BE–BL –9.46 0.40 0.54

TO–BL –9.46 0.41 0.15

BE–AL –9.01 0.55 0.73

TO–AL –9.01 0.35 0.11



The observed dependence of the g values on the size of the alcohol mole-
cule is not unexpected. In our previous studies4,17 we have observed that
there exists a specific interaction between aromatic rings and oxygen-
carrying compounds (ketones, esters). This explains the very low interac-
tion coefficients for the shorter alcohols. The longer alcohols carry a much
longer aliphatic segment, the interaction of which with aromatic com-
pounds is known to lead to moderately positive values of the interaction
coefficient g. The negative values of the enthalpy portion h of the interac-
tion coefficient that were observed for the shorter alcohols are consistent
with the surmised specific interaction of the alcoholic oxygen with the aro-
matic ring. Moreover, their comparison with the Gibbs energy coefficient g
leads to the conclusion that the entropy in our mixtures decreases due to
the formation of contacts between the alcohol chains and the aromatic
molecules. Again, this should not be surprising: the aromatic molecules
that have to approach the alcohol oxygen in a proper way must lose part of
their entropy because their orientation becomes less random.

Renon and Prausnitz12 analyzed literature data (calorimetry, vapor–liquid
equilibria) for mixtures of alcohols with aliphatic hydrocarbons. They also
found that H0 is the same for all alcohols and report for it a value of –7.5
kcal/mol (–31.4 kJ/mol). This is a close agreement with our value –27 kJ/mol.
For measurements at 50 °C, they report for the equilibrium constant K the
value 350 for methanol, 150 for ethanol, and 70 for propan-1-ol. Our val-
ues for these compounds at 20 °C are 120, 80, and 60, respectively.

The volume fraction φi is in common use in treatments based on the
Flory–Huggins theory. One of us16 has shown that the association equilib-
rium constant is virtually independent of rA if defined in terms of the con-
centration ψi

ψi = Ni/N = φi/irA (55)

The new equilibrium constant Kψ is

Kψ = ψi+1/(ψi ψ1) = rA K (56)

and the corresponding standard Gibbs energy Gψ
0

Gψ
0 = G0 – RT ln rA (57)
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so that from Eq. (54) we have

Gψ
0 = –13 380 J/mol (58)

irrespective of the alcohol chain length. This is understandable because ψi
is proportional to the molar concentration of i-mers ci, and so also to the
frequency of free hydrogen atoms of hydroxy groups situated at the end of
each i-mer chain.

What is the value of entropy accompanying the formation of the hydro-
gen bonds? It follows from our model that this entropy S0 should be de-
fined as

S0 ≡ NAv(SH + k ln ZH) . (59)

Then combination of Eqs (44) and (54) with our value of H0 yields

S0 = (–27 000 + 13 380)/T . (60)

At 298 K, we have S0 = –45.6 J/K mol, a rather high negative value. Accord-
ing to Eq. (59), S0 consists of two contributions. The latter one, describing
the effect of conformational partition function changes, can be estimated
from the coordination number of the lattice and from the effective number
of orientations available to a pair of successive elements of the association
chain. It turns out to be slightly negative. Evidently, the dominant part of
S0 is NAvSH, which reflects the proper interaction of the OH group proton
with the oxygen electron pair.

CONCLUSIONS

1. The method of light scattering was shown to be capable of yielding
valuable thermodynamic data for mixtures of alkanols with aromatic hy-
drocarbons.

2. ∆Gmix as a function of the composition of the mixture was measured
for eleven selected binary mixtures that used five alkanols and four aro-
matic hydrocarbons.
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3. A detailed analysis was presented for a model of alcohols that form in
the liquid linear chains of molecules connected by hydrogen bonds. The
distribution of chain lengths is governed by rules of the thermodynamics of
chemical reactions. The distribution changes when the alcohol is diluted
with a nonaggregating diluent. The model considers also the contact inter-
actions.

4. The model predicted that the equilibrium constant governing the hy-
drogen bonding would depend on the chain length of the alcohol if ex-
pressed in volume fractions.

5. The present experimental data as well as literature data for enthalpies
of mixing conformed to the model exceedingly well.

6. The formation of hydrogen bonds was successfully described by using
just two adjustable values: G0 = (–13 380 + RT ln rA) J/mol, where rA is the
number of atomic groups in the alcohol; and H0 = –27 000 J/mol.

7. Contact interaction coefficients reflected a specific interaction between
the aromatic ring and oxygen atoms in the alcohol. The enthalpic portion
of the interaction was very small for the shorter alcohols and regularly in-
creased with the size of the aliphatic portion of the alcohol. The interaction
lowered the entropy due to the partial loss of the orientational freedom of
the aromatic molecules interacting with the oxygen atom.
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